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Abstract

This paper discusses the practical implementation of a thermodynamically based procedure for the derivation of
the e�ective nonlinear constitutive relations for composites with evolving microstructure. Examples of the procedure
for the case of an elastic periodic composite with several growing cracks are presented. These examples are intended

to show how the use of this procedure di�ers from the traditional global-local analysis approach and how well
suited it is for use with general purpose structural analysis packages. # 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

The structural analysis of composite components characterized by evolving damage at the microscopic
scale is, in general, predicated upon the availability of e�ective damage dependent constitutive and

evolution equations. E�ective constitutive equations describe the behavior of a single material point of

an equivalent homogeneous medium. Ideally, these equations should be valid for any deformation
history that a material point will experience. Obtaining equations of this type is the fundamental goal of

any theory of e�ective properties of composites. Among these theories, continuum damage mechanics
(CDM) and homogenization theory (HT) are perhaps the two most prominent.

CDM (Chaboche, 1981, 1988a, b; Kachanov, 1986; Krajcinovic, 1996; Lemaitre, 1996) is, in essence, a
phenomenological approach where the mathematical description of a certain type of microscopic

damage mechanism is postulated to be given in terms of some appropriately de®ned damage variables.
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Once a set of state variables (internal and external) have been selected, the constitutive equations are
obtained using continuum thermodynamic theories of constitutive equations (cf Coleman and Gurtin,
1967; Coleman and Noll, 1963; Germain et al., 1983). The constitutive equations thus obtained, along
with the companion evolution equation for the internal state variables, contain material constants to be
determined via experiments. This approach, no matter how elegant, may be di�cult to use in practice
depending on the complexity of the material point internal state. In particular, in problems where the
damage evolution causes the symmetry properties of material points to change and where simple
evolution laws (e.g. deriving from a convex dissipation potential as is the case for J2 materials as
discussed by Maugin, 1992) cannot be postulated, extremely complex experiments are required to
characterize the material constitutive equations for a wide enough range of load histories. Furthermore,
small changes in microstructure (e.g. ®ber volume) require a completely new set of experiments. These
di�culties are greatly magni®ed whenever the selected damage variables are of tensorial nature. This is
perhaps the reason why many of the practical applications of CDM are based on the assumption that
damage preserves isotropy during its evolution (cf Kachanov, 1986).

Homogenization theories are based on the idea that given the geometric and constitutive properties of
a representative volume element (RVE)2 one can obtain the e�ective properties of an equivalent
homogeneous material via averaging techniques. This process requires the de®nition of macroscopic
variables that are spatial averages of local ®elds within the RVE. Also, for the e�ective constitutive
equations to make physical sense, i.e., to conform to a thermodynamically consistent theory of
constitutive equations (see e.g. Bowen, 1989; Coleman and Gurtin, 1967; Coleman and Noll, 1963;
Germain et al., 1983), the macroscopic variables should be de®ned in such a way that one can identify
what con®guration of the local microscopic ®elds has generated such an average (Maugin, 1992; Stolz,
1986; Suquet, 1985, 1987). This type of inverse problem is often referred to as a localization procedure
(or problem). Furthermore, even when the de®nition of an average quantity is appropriate, one must
ensure that all the variables in question are independent macroscopic state variables3, i.e., that in a
thought experiment it can be varied arbitrarily while keeping all other macroscopic state variables, both
external and internal, ®xed.

Rigorous homogenization procedures satisfying the requirements mentioned above are of general
practical use in a variety of applications including linear elastic and linear viscoelastic composites with
®xed microstructure (cf Bakhvalov and Panasenko, 1989; Bensoussan et al., 1978; Suquet, 1987).
However, for elasto-plastic composites it has been proven that although a physically meaningful
de®nition of macroscopic (or average) plastic strain can be de®ned, such an average does not allow for
the construction of a successful localization procedure (Suquet, 1985, 1987). From a theoretical
viewpoint, this fact leads to the conclusion that the local (or microscopic) plastic strain ®eld, i.e., the
collection of the values of the plastic strain at all points in the RVE, must be retained at the
macroscopic level as the only correct descriptor of the plastic ¯ow evolution. In other words, the
formulation of e�ective constitutive and evolution equations for an elasto-plastic composite that are
thermodynamically correct requires `an in®nite number of internal state variables', namely the
microscopic plastic strain ®eld at every point in the RVE (Maugin, 1992; Suquet, 1985, 1987). Clearly,

2 A representative volume element is de®ned to be a portion of the heterogeneous material under consideration, whose average

properties coincide with the average properties of the medium as a whole. In periodic media, the RVE is chosen to coincide with

the periodic unit cell of the material.
3 The celebrated Vakulenko±Kachonov variable (Vakulenko and Kachanov, 1971), de®ned as the RVE volume average of the

tensor product of the crack opening displacement function and the crack face unit normal vector ®eld [see Eq. (11)], can be con-

sidered a typical example of a damage variable that cannot be used as a macroscopic internal damage state variable. In fact, it is

not di�cult to realize that such a variable, de®ned in terms of the displacement ®eld within an RVE, is intrinsically dependent on

the applied external loads, which, for a typical RVE, are given in terms of the average (total) strain or stress.
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this result implies that practical applications of homogenization theories to elasto-plastic systems require
appropriate approximation strategies such as those discussed by Aboudi (1991), Dvorak (1992), Dvorak
and Benveniste (1992), Suquet (1985) and Costanzo et al. (1996).

In principle, a homogenization theory allows one to derive the e�ective constitutive and evolution
equations if an accurate description of microscopic deformation mechanisms can be found. This makes
HTs rather appealing especially for the case of media with evolving microstructure. In fact, in the case
of microcracking, one can explicitly make use of fracture mechanics based concepts and crack growth
criteria to derive their overall e�ect at the macroscopic level. However, analyses such as those given by
Stolz (1986) and Costanzo et al. (1996) show that an average representation of microcracking within an
RVE cannot be found if a well-posed localization procedure is to be constructed, i.e., in order to use
fracture mechanics to understand how failure and crack propagation manifest themselves at the
macroscopic level, one must model microcracking explicitly as it is done in a so-called global±local (GL)
approach. In the GL approach, macroscopic structural components are analyzed using standard
methods while every time information concerning the constitutive equations is needed, a companion
micromechanics boundary value problem is explicitly solved. Consider then that if the macroscopic
structural analysis is carried out using the ®nite element method (FEM), a companion micromechanics
problem would have to be solved at every integration point in the FE grid and at every time step of the
applied load history.

The main problem hindering the widespread use of a GL approach to study the nonlinear behavior of
composites is the need for computational power that is usually out of the reach of most structural
analysis practitioners. More importantly, GL analyses do not deliver the e�ective constitutive relations
of a material. Rather, they provide the value of the current average stress (or strain) for the current
average strain (or stress) at a material point. Therefore, a GL strategy does not provide any constitutive
information that could be used in anything other than the particular problem and the particular load
history at hand. Clearly, a more desirable result would be one where the e�ective constitutive equation
for a given material could be obtained once and for all as well as separately from any particular
problem. The objective of the present paper is to discuss a micromechanics based approach for the
derivation of the e�ective constitutive equations having precisely this quality. In other words, a
computational strategy is presented for the derivation of constitutive equations for composites with
growing cracks that are obtained once and for all and that are valid for any load history while
maintaining consistency with continuum thermodynamics. In this context, it is believed that the
proposed strategy constitutes a more e�cient alternative to a GL analysis approach.

The paper is structured as follows: Section 2 contains some basic equations and de®nitions, Section 3
describes how the proposed approach is practically implemented whereas Section 4 is devoted to the
presentation and discussion of a series of examples. Finally, Section 5 contains the conclusion to the
paper.

2. Background

This section is devoted to a summary of the homogenization theory presented by Costanzo et al.
(1996) (see also Bui and Ehrlacher, 1980; Bui et al., 1982; Stolz, 1986). In this reference, an inelastic
composite material with temperature dependence and growing cracks was considered. Since the thrust of
this paper is not the establishment of general theoretical results but rather the discussion of how to
practically implement a speci®c micromechanics-based strategy, for the sake of simplicity the system
considered herein will be linear elastic and isothermal. The generalization to more complex scenarios is
relatively straightforward.
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2.1. RVE geometry and local ®eld equations

The ®rst step of a homogenization procedure is the selection of an appropriate representative volume
element for the material at hand. For discussion, we consider a ®ber reinforced composite arranged in a
square array. Then, with reference to Fig. 1, the selected RVE has volume V and external surface SE,
the latter being oriented by an outward unit normal vector nk. The RVE contains one or more growing
cracks denoted C i(t ), with i=1, . . . ,N. The variable t denotes time. The i-th crack surface is oriented by
a unit normal m i

j and is bounded by a front denoted by @C i(t ). The cracks are surfaces of discontinuity
whereas the crack fronts are singularity lines for various mechanical ®elds (e.g. stress, strain and strain
energy). The jump of a generic ®eld f across the crack faces is denoted by [f ] and is de®ned as follows:

�f�: � f� ÿ fÿ, �1�
where

f2�zj, t�: � lim
x40�

f�zj2xmi
j, t�, �2�

and zj $C
i(t )/@C i(t ) and x $ R.

The system's evolution will be assumed to be quasi-static and body forces are assumed to be
negligible. The local equilibrium equations are therefore given by

sij, j � 0 in V; and T �i � s�ij m
k
j � T ÿi � sÿij m

k
j on C k�t�, �3�

where sij is the Cauchy stress tensor and Ti is the traction vector. The local constitutive equations for all
constituents are assumed to be those of an isothermal elastic material and are therefore expressed by the
generalized Hooke's law:

sij�xp, t� � aijkl�xp�ekl�xp, t�, �4�
where xp represents the position vector of a generic point within the RVE, aijkl (xp) represents the
(position dependent) elastic moduli and eij is the small strain tensor de®ned as follows:

eij: � 1
2�ui, j � uj, i �, �5�

where ui is the displacement vector ®eld.

Fig. 1. RVE with linear elastic constituents and growing cracks.
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2.2. Volume averages and macroscopic quantities

For an RVE without cracks, the volume average of a generic ®eld f is denoted by f- and de®ned as
follows:

�f: � 1

V

�
V

f dV, �6�

where V also denotes the measure of the RVE volume. This de®nition is made invalid by the presence of
growing cracks and must therefore be modi®ed. Hence, let S �iC (t ) be the envelope surface of all the
spheres of radius d having center on the i-th crack. Let c ij be the velocity vector characterizing the
advancement of @C i(t ) and c �ij the corresponding velocity ®eld induced by c ij on S �iC. Finally, let V

�i
C be

the volume bounded by the surface S �iC. The volume average operation is now rede®ned as follows (cf
Bui and Ehrlacher, 1980; Bui et al., 1982; Costanzo et al., 1996; Stolz, 1986):

�f: � lim
d40

�
1

Vd

�
Vd

f dV

�
� 1

V
lim
d40

�
Vd

f dV, �7�

where Vd M VÿSN
i = 1V

�iC (note that the limd40V
�iC=0). In the presence of growing cracks, it is

important to take time derivatives of volume average variables. Hence, it is useful to have an expression
for the time derivative of the quantity de®ned in Eq. (7). It can be shown (Bui et al., 1982; Costanzo et
al., 1996) that the material time derivative of a volume averaged quantity takes on the form:

_�f � �_fÿ 1

V

XN
i�1

lim
d40

�
@C �i

fc�ij n�ij dA �8�

where the dot over a quantity denotes the time derivative of that quantity, @C �i is the envelope of all
spheres with radius d and center on @C i, and n �j is the unit normal orienting @C �i outward with respect
to the volume enclosed by @C �i. In order to properly use Eq. (8), one must make some assumptions
concerning the strength of the singularity of the various mechanical ®elds in the vicinity of the crack
front. Using fracture mechanics as a guide (cf Costanzo et al., 1996; Kanninen and Popelar, 1985), it is
assumed that the stress and strain ®elds sij and eij are singular as rÿ1/2 where r is the distance from the
crack front measured on a plane perpendicular to the crack front itself.

The various mechanical ®elds within the RVE will be referred to as local or microscopic quantities,
whereas macroscopic quantities will be those obtained by averaging local ®elds. Perhaps the most
important macroscopic parameters are the average strain and stress. The macroscopic strain is denoted
by Eij and is de®ned as the boundary average of the tensor product between the displacement ®eld and
the unit normal orienting the RVE boundary:

Eij: � 1

2V

�
SE

�uinj � ujni � dA: �9�

In the absence of cracks this de®nition coincides with the volume average of the microscopic strain.
When cracks are present, the relation between the average strain and the macroscopic strain is given by:

�eij � Eij �
XN
p�1

D
p
ij , �10�

where
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D
p
ij : �

1

2V

�
C p

��ui �m p
j � �uj �m p

i � dA �11�

are the so-called Vakulenko±Kachanov variables (Vakulenko and Kachanov, 1971). The macroscopic
stress tensor is denoted by Sij is de®ned as follows:

Sij: � 1

2V

�
SE

�siknkx j � sjknkxi � dA: �12�

It is not di�cult to show (cf Costanzo et al., 1996) that

Sij � sij, �13�
where it is assumed that s2

ijm
k
j=0 on the surface of any open crack. Also, as a consequence of Eq. (8)

and of the assumption concerning the stress and strain singularities at the various crack fronts we have
that

_Eij � 1

2V

�
SE

� _uinj � _ujni � dA and _Sij � _sij: �14�

2.3. Boundary conditions

Ideally, one may wish to associate to a given value of a certain macroscopic state variable the
microscopic ®eld that generates such an average while keeping the equilibrium and local constitutive
equations satis®ed (cf Maugin, 1992; Suquet, 1985, 1987). Clearly, this is an inverse problem which may
not be always well-posed. However, this can be achieved for the macroscopic strain and stress as long as
the underlying boundary conditions are chosen among the following three types.

2.3.1. Uniform stress

Ti�xk, t� � Sij�t�nj, �15�
where xk $ SE and Sij satis®es Eq. (13).

2.3.2. Uniform strain

ui�xk, t� � Eik�t�xk, �16�
where xk $ SE and Eij satis®es Eq. (9).

2.3.3. Periodic boundary conditions

ui�xk, t� � Eik�t�xk � u�i �xk, t�, �17�
where xk $ RVE, u �i (xk, t ) is an RVE-periodic displacement function, that is, a periodic function of
space whose period is the xq-direction in the RVE size in that direction. Eq. (17) must also be
complemented with the condition that the boundary traction ®eld be anti-periodic.

Under any one of the boundary conditions listed above, one can show (cf Maugin, 1992) that the
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following relation, often referred to as the Hill±Mandel macrohomogeneity condition (Hill, 1963, 1965a,
b; Mandel, 1964, 1977) is satis®ed:

EijSij � eijsij: �18�
Furthermore, when the damage is in the form of cracks and when the assumptions on the nature of the
stress and strain singularities discussed earlier are satis®ed, one can show (cf Costanzo et al., 1996) that
macrohomogeneity condition can also be given the following rate form:

_EijSij � _eijsij: �19�

2.4. Crack growth laws and elastic localization

For a ®xed con®guration of (non-growing) cracks, Eqs. (3)±(5), (9) and (12), along with one of the
boundary conditions listed in the previous section de®ne a boundary value problem (BVP) whose
solution exists and is unique (cf Suquet, 1987). The situation is slightly more complicated for problems
where possible crack closure occurs but even in this case one can show existence and uniqueness of
solutions (cf Andrieux, 1981; Bensoussan et al., 1978; Leguillon and Sanchez-Palencia, 1982; Suquet,
1981). The case of a problem with growing cracks changes the nature of the problem in a rather
signi®cant way. In fact, the problem becomes an initial-boundary value problem (IBVP) whose nature
strongly depends on the evolution equations that govern the crack evolution.

The existence and uniqueness of solutions to an IBVP where a system of cracks grows in an elastic
medium with a pointwise convex strain energy function and where the crack propagation is governed by
the Gri�th criterion (Gri�th, 1921) has been discussed by Nguyen (1980, 1985) and Nguyen et al.
(1990). These problems have been shown to have a formal structure that is essentially identical to that
of IBVP characterized by the quasi-static evolution of plastic ¯ow in an elastic perfectly±plastic medium.
The consequence of this analogy is that IBVPs where a system of Gri�th cracks grows quasi-statically
in an elastic medium do not, in general, yield unique solutions. Furthermore, these problems may be
characterized by unstable crack growth where the latter may appear while the system evolution is still
unique or it may follow a stable bifurcation point (Nguyen, 1985; Nguyen et al., 1990; Triantafyllidis,
1983). The origin of this behavior is to be found in the discontinuous nature of the Gri�th criterion,
which does not limit the rate at which a crack can grow once the energy release rate G reaches its
critical value Gcr. If the applied load history is such that G attempts to become larger than Gcr the
crack will grow of an amount and at a rate that keeps G=Gcr, in the same way that plastic ¯ow occurs
so that the stress state never goes outside the yield surface in an IBVP with an elastic perfectly±plastic
material. Thus, using the analogy with plasticity theory, to de®ne a quasi-static IBVP characterized by
the existence and uniqueness of stable solutions, a more regular crack growth law can be de®ned by
including time dependence in the crack growth law. This can be accomplished in a simple way by
considering a crack evolution law of the following type (cf Coussy, 1986; Schapery, 1975a, b, c):

_li � ZihGi ÿ G cr
i i, �20�

where i = 1, . . . ,N, Zi will be referred to as the crack growth viscosity coe�cient for the i-th crack, Gi

and Gcr
i are the energy release rate and its corresponding critical value for the i-th crack, and where h

.
i

denote the positive part operator, that is,

hfi �
�
0 if fR0,
f if f > 0,

�21�
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f being a scalar quantity. Clearly the evolution laws in Eq. (20) make sense only in a two-dimensional
context and a generalization should be provided for a general three-dimensional case. Henceforth
however, for convenience, we will limit ourselves to two-dimensional cases only. Before proceeding
further, it should be noted that the case of crack evolution under the classical Gri�th criterion can be
achieved as a limit case of the laws in Eq. (20) by letting Zi41. Furthermore, the evolution law(s) in
Eq. (20) can be considered time dependent since the term GiÿGcr

i depends on the applied strain history,
which, in turn, is a function of time.

Eqs. (3)±(5), (9) and (12), along with one of the initial/boundary conditions (I/BCs) listed in the
previous section, with the crack evolution laws in Eq. (20), and, ®nally, a crack con®guration initial
condition of the type

li�0� � l̂i, �22�
de®ne a well-posed quasi-static IBVP.

The unique solution to the IBVP de®ned above can be given the form

eij�xq, t� � Lijkl�xq, t�Ekl�t�, �23�
where the fourth-order tensor function Lijkl (xq, t ) is referred to as the elastic strain localization tensor
(or, more concisely, localization tensor). The time dependence in the localization tensor is not a
re¯ection of the applied load history4, but rather arises from the damage evolution, i.e., Lijkl would be a
constant function if the cracks were not present or if they did not grow.

2.5. E�ective elastic moduli

Once the localization problem is solved, the e�ective elastic moduli, denoted by Aijkl (t ), are obtained
via a straightforward application of the macrohomogeneity condition in Eq. (19). This operation results
in the following expression for the e�ective moduli:

Aijkl�t� � apqrsLijpqLrskl: �24�
Now that the e�ective elastic moduli have been derived a few remarks are in order.

Remark 1. (Summary of assumptions). The homogenization procedure illustrated above is built upon all
of the assumptions that de®ne the corresponding localization problem. In particular, the chosen
boundary and initial conditions limit the generality of the derived e�ective moduli. In other words, the
e�ective moduli in Eq. (24) are not valid for any load history and initial crack con®gurations but only
for those assigned in the construction of the localization problem. Clearly, the dependence on initial
conditions also includes the initial microcracking con®guration. Furthermore, the crack growth
evolution laws and the growth rates are accounted for via the localization tensor Lijkl (xq, t ).

Remark 2. (Practical considerations). Recalling the discussion in the introduction and in view of Remark
1, one can easily see that the e�ective moduli delivered by this procedure are not of immediate practical
use, unless one has the capability to include in the homogenization procedure the set of all possible
initial crack con®gurations and all possible applied load histories. This was successfully accomplished by

4 Here, a load history consists of a macroscopic stress history, if the I/BCs are of type 1, or of a macroscopic strain history if the

I/BCs are of type 2 or 3.
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Ponte-CastanÄ eda and Zaidman (1996a, b) in the derivation of the constitutive equations of a viscoplastic
(but not elastic) matrix with evolving ellipsoidal voids. In Ponte-CastanÄ eda and Zaidman (1996a, b) the
particular microstructure studied is such that the geometry of a void is completely described by six
scalar parameters, i.e., the three ellipsoidal semi-axes and their direction cosines. Furthermore, the
assumptions regarding the geometry of the voids and their concentration allows one to analytically
construct a localization procedure in terms of Eshelby tensors (Eshelby, 1957). This is equivalent to
solving the localization problem in closed form. In turn, this means that the parameters that de®ne the
I/BCs as well as the applied load history appear explicitly in the expression of the e�ective moduli and
can therefore be varied arbitrarily. Clearly, this situation cannot be achieved for general composites with
growing cracks because, in general, there are no closed form solutions of these problems unless, of
course, one assumes that the cracks are ¯at ellipsoidals surrounded by a homogeneous material.

3. Damage space de®nition and discretization

In view of Remark 1, the localization problem discussed in Section 2.4 is given the following
reformulation (cf Germain, 1982; Maugin, 1992; Nguyen, 1985; Nguyen et al., 1990):

_li�t� � ZihGi�t� ÿ G cr
i i, �25�

Gi�t� � ÿ@H�Eij�t�;l1�t�, . . . , lN�t��
@ li

, �26�

H�Eij�t�;l1�t�, . . . , lN�t�� � min u�
k
2K�Eij�t�;li...lN�t��E�u�k�xq, t�, li�t�, . . . , lN�t��, �27�

E�up�xq, t�, li�t�, . . . , lN�t�� �
�
V

1
2aijkleij�xq, t�ekl�xq, t� dV, �28�

K�Eij�t�;li�t�, . . . , lN�t�� �
8<: ui�xj, t� � Eij�t�xj for xj on SE,
eij � 1

2�ui, j � uj, i � for xq 2 V,
�um�r0 on C i, i � 1, . . . , N,

�29�

li�0� � l̂i, �30�
where K represents the set of all RVE kinematically admissible displacement ®elds, E(up (xq, t ),
li (t ), . . . ,lN (t )) is the RVE total potential energy corresponding to a given displacement ®eld up and a
given crack con®guration li (t ), . . . ,lN (t ), H(Eij (t ); l1(t ), . . . ,lN (t )) is the RVE total (Helmholtz) free
energy of the equilibrium solution corresponding to a given microscopic strain Eij and a given crack
con®guration li (t ), . . . ,lN (t ). Clearly, the set K and the form of the total potential energy of the RVE
must be changed when using BCs other than those of uniform strain type, although the overall
procedure would not change.

The above reformulation is useful because it shows that the evolution of the RVE can be reduced to
the study of the IVP consisting of the ordinary di�erential equations in (25) together with the ICs in
(30) as long as the function H is available. Furthermore, this reformulation shows that the function H
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can be constructed without any reference to a speci®c load history because time appears in H only
implicitly. Finally, it should be noticed that the function

H�Eij�t�;l1�t�, . . . , lN�t�� � H
V

, �31�

is the macroscopic Helmholtz free energy of the homogenized equivalent homogeneous material, i.e., if
can be easily shown that

Sij�t� � @H�Ekl�t�;l1�t�, . . . , lN�t��
@Eij

: �32�

Eq. (32) indicates that the N variables l1(t ), . . . ,lN (t ) appear in the homogenized constitutive equations
of the material as Internal State Variables (ISVs), thus recovering, at least formally, a formulation
similar to that sought by continuum damage mechanics.

The above discussion implies that the e�ective constitutive and evolution equations can be simply
obtained once and for all and without reference to a particular load history as long as one properly
constructs the function H. Clearly, it would be impractical to determine the value of H for all possible
values of length of the N cracks present in the problem. However, what can be practically achieved is
the computation of the function H at some speci®c set of crack length values, while the determination
of the value of H for other crack length con®gurations can be obtained via interpolation. This strategy
will be described next.

With reference to Fig. 2, let the various crack paths of interests be selected and let li represent the
non-dimensional length of the i-th crack, that is,

li � li
li0
, 0RliR1, i � 1, . . . , N, �33�

where li0 represents the maximum crack length achievable by the i-th crack. An N-tuple of values
(l1, . . . ,lN) identi®es the coordinates of a point in an N-dimensional space which will be referred to as
the damage space. In this context, the set of values (l1, . . . ,lN) de®nes a point in the damage space unit
cube UC de®ned as follows:

UC � f�l1, . . . , lN� j li 2 �0, 1�, i � 1, . . . , N g �34�

Fig. 2. Schematic RVE with selected crack paths.
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Now, for each li consider a ®nite and discrete set of values {l k
i }, with k = 1, . . . ,Mi, obtained by

partitioning the interval [0, 1] in Mi parts:

0 � l1i < l2i < � � � < lMi � 1: �35�
The set {l k

i } will be referred to as a discretization of the i-th crack path. This discretization generates a
corresponding discretization of UC given by the Cartesian products of all the sets {l k

i }. An example of
damage space discretization is depicted in Fig. 3, where, with reference to Fig. 2, it has been assumed
that l1 and l2 are the only cracks present in the RVE. The set of points appearing in Fig. 2 is one of
the many sets that one could use to discretize the UC. Going back to the discussion concerning the
RVE free energy, one can see that by explicitly calculating H (or H) at the discrete points (l k

1,
l k
2, . . . ,l k

N), for a discrete set of macroscopic strain values, all possible values of H for any damage
con®guration and strain levels can be obtained via an interpolation scheme. The latter would then allow
one to obtain all the information necessary to use the constitutive and evolution equations of the
composite material. To exemplify this last point consider a case where the system behaves linearly
elastically for a ®xed con®guration of the cracks. Hence, the overall scheme reduces to calculating a
®nite number of elastic moduli corresponding to the values that these moduli take on at the various
points of the discretized UC. In fact, in this case we have

H�l1, . . . , lN� �
(

1
2Aijkl�l1, . . . , lN�EijEkl for Eiir0,
1
2Aijkl�0, . . . , 0�EijEkl for Eii < 0,

�36�

where, in an approximate sense, the case with Eii < 0 is taken to identify crack closure. Speci®cally, for
a damage space discretization such as that depicted in Fig. 3, one only needs to compute the elastic
moduli at the 48 points de®ning the UC discretization using standard homogenization schemes. A
possible and simple interpolation scheme to determine the value of the elastic moduli at all other points
in the UC can be constructed as follows. Again, with reference to Fig. 3, consider the rectangle of
vertices P1=(lm

1 , l
n
2), P2=(lm + 1

1 , l n
2), P3=(lm + 1

1 , l n + 1
2 ) and P4=(lm

1 , l
n + 1
2 ), with 1Rm RM1 and

1 R n R M2. Now let APq
ijkl, with q = 1, 2, 3, 4, be the values of the elastic moduli at the points

P1, . . . ,P4. The value of the elastic moduli at points within said rectangle can therefore be determined via
the use of the appropriate Lagrange polynomials (cf Hughes, 1987): f1(l1, l2), . . . ,f4(l1, l2), and
expressed as follows:

Fig. 3. Discretization scheme for a 2-D damage space.
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Aijkl�l1, l2� �
X4
q�1

A
Pq

ijklfq�l1, l2�, �37�

where l1 $ [lm
1 , l

m + 1
1 ] and l2 $ [l n

2, l
n + 1
2 ]. An interpolation scheme of this type is represented in Fig. 4

depicting the value of the coe�cient A1111 over the entire damage space for a case where the active
cracks in the RVE are l1 and l3. Clearly, other and more sophisticated interpolation schemes can be
constructed in a similar way.

Before illustrating some examples of application of this procedure a number of remarks are in order.

Remark 3. (Damage space discretization and FEM). Fig. 2 shows an RVE along with a number of crack
paths and an underlying Finite Element grid. As discussed in Section 4, the latter was used in the
solution of the micromechanics problems necessary to determine the elastic moduli at the various points
de®ning the UC discretization. What should be noted here is that the FEM grid used to solve the
micromechanics problems and the UC discretization need not coincide. In fact, in principle the
micromechanics necessary to evaluate the function H (or H) does not need to be carried out using the
FEM at all.

Remark 4. (Interpolation within the damage space). The method selected to interpolate the values of the
function H (or H) within the UC must be chosen so as to accommodate the smoothness requirements
dictated by the selected crack evolution law. In fact, with reference to Eqs. (25) and (26), one sees that
the evaluation of the energy release rates requires that the interpolation functions be at least once
di�erentiable. However, if one were to choose linear interpolation functions for the elastic moduli, there
may be instances where the energy release is a constant function of the parameters l1, . . . ,lN for a
certain range of these parameters. Hence, depending on the desired accuracy, one may need to use
interpolation functions that are smoother than the minimum required by the particular evolution law at
hand.

Remark 5. (UC discretization and thermodynamics). From the viewpoint of continuum thermodynamics,
the choice of a crack path is equivalent to the de®nition of an ISV. Hence, the example depicted in Fig.
3 along with Eqs. (36), de®nes a nonlinear material with two internal state variables. The corresponding

Fig. 4. Surface representing the elastic coe�cient A1111 as a function of the two damage variables l1 and l3, obtained using a

bilinear interpolation scheme.

A.A. Caiazzo, F. Costanzo / International Journal of Solids and Structures 37 (2000) 3375±33983386



crack growth laws in Eqs. (25) provide the necessary internal state evolution laws. Thus, the procedure
outlined above delivers equations of the same type as those usually proposed within a phenomenological
theory such as CDM. To stress the fact that the present approach is actually homogenization-based and
that the ®nal form of the e�ective constitutive equations are obtained using the concept of damage space
discretization, it will be referred to as a Discretized Damage Space Homogenization Method (DDSHM).
The DDSHM di�ers from a global±local approach in that the DDSHM delivers the constitutive
equations of the composite material at hand without reference to a particular applied load history. This
quality originates from the selection of a ®nite number of crack paths. Hence, it could be argued that,
depending on the complexity of the system's microstructure, the DDSHM is just as numerically involved
as a full scale GL analysis. However, for some problems there may be conditions that may make this
approximation scheme preferable and signi®cantly more ¯exible than a GL analysis. In fact, experience
tells us that not all theoretically possible crack paths are relevant to the understanding of a given
composite material system. Furthermore, even if one were to perform a GL analysis choices must be
made as to the selection of these paths and for this reason a GL analysis would yield essentially as
much accuracy as the proposed approach, without the added bene®t of having a `stand-alone' set of
constitutive equations. Hence, despite the fact that the approach proposed above may not prove to be
always more e�cient than a corresponding GL analysis, there may be a rather wide spectrum of
problems for which it may indeed be more e�cient.

4. Examples

In this section we present results of numerical calculations to illustrate the implementation of the
theory presented in Sections 2 and 3. In the examples reported herein, we have limited the maximum
dimension of the damage space to 2, i.e., there are at most two possible crack paths active at any one
time. This will simplify the graphical presentation of the results. For each of the examples, the crack
evolution laws used are those in Eq. (25). For the one-dimensional case, the damage space discretization
consisted of 29 points, whereas a total of 464 points were used in the two-dimensional case. To calculate
the homogenized elastic coe�cients at these points an FEM based homogenization scheme was used
where the FEM grid employed is that in Fig. 2 and the boundary conditions were chosen to be of the
`uniform strain' type. As far as the interpolation strategy adopted in the following examples is
concerned, second-order Lagrange polynomials (cf Hughes, 1987) were used in both the one- and two-
dimensional cases.

One of the goals of this work is to develop and demonstrate a theory for modeling constitutive
relations for nonlinear composite materials with growing cracks which is suitable for use with general
purpose structural analysis packages. In this regard, it is important to note that all results that follow
have been obtained by assigning a strain history to a material point whose constitutive relations had
been derived with no prior knowledge of the applied load history, i.e., not by solving a micromechanics
problem for each point in time as one would to do if using a GL approach. The strain histories assigned
to said material point are precisely the type of load history de®nition used in the ABAQUS (HKS, 1998)
®nite element program. Simple monotonic and more complex cyclic strain histories were studied. In all
cases, the coupled set of nonlinear ordinary di�erential equations in (25) was solved numerically using a
Runge±Kutta algorithm with adaptive time step size control (Press et al., 1986).
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4.1. Single crack problem

With reference to Fig. 2, a square RVE with a single crack is now considered. The single crack path
selected in this example is that denoted by l3, that is, a disbond crack. The RVE constituents are
assumed to behave linearly elastically, so that the resulting e�ective constitutive equations of the
composite are of those in Eq. (36), with N=1.

The composite material response to three di�erent applied strain histories of the type E11=E12=E(t ),
E22=0, is depicted in Fig. 5 where the initial disbond condition has been chosen to be l3(0)=0.2. The
nominal value of E0 used in this case was 0.005. This simple one-dimensional example yields the
expected evolution of the microstructural state: due to the evolutions laws in Eq. (25), the rate at which
the crack propagates is higher for the higher applied strain rate.

Figs. 6 and 7 illustrate the sensitivity of the e�ective material response to various values of the
regularization parameter Z in Eq. (25). In particular, Figs. 6 and 7 represent the response to a
`relaxation' test-type load E22(t )=E 0

22=const., where the value given to E 0
22 was chosen to be just large

enough to cause crack growth. As the value of Z increases the damage evolution seems to take on an
unstable character, that is, l3 jumps almost instantaneously from its initial length to an equilibrium
value which depends on the magnitude of the applied strain. This behavior can be explained by recalling
that as the value of Z is increased, the crack evolution law in Eq. (25) tends to approximate the crack
growth behavior that is governed by the Gri�th criterion. The latter allows one to predict stable crack
growth only when the second derivative of the elastic strain energy with respect to crack length is
positive (Nguyen et al., 1990). Since the material discussed herein contains l3 as the only ISV, using Eq.
(36), and recalling that the example at hand is characterized by E11=E12=0 while E22=E 0

22=const.,
this positivity condition takes on the form

d2H

dl23
� 1

2

d2A2222

dl23
�E 0

22�2 > 0: �38�

Fig. 5. Evolution of the ISV l3 due to three di�erent applied strain histories.
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In other words, said positivity condition can be translated into a positivity condition for the second
derivative of the elastic modulus A2222 with respect to the damage variable l3. As displayed in Fig. 8,
the elastic moduli of the e�ective medium at hand are characterized by a downward concavity for l3=0,
i.e., at the initial condition used to generate Figs. 6 and 7, thus con®rming that an initial unstable
behavior under the constraints imposed by the Gri�th criterion is to be expected. It should be noted
that the equilibrium value reached by the ISV l3 of roughly 0.35 corresponds to a region of shallow but
positive concavity of the A2222 elastic modulus, the latter being the only relevant elastic modulus in this
discussion.

Fig. 6. Evolution of the ISV l3 due to a constant applied strain as a function of the parameter Z.

Fig. 7. Evolution of the macroscopic stress component S22 corresponding to the damage evolution displayed in Fig. 6, due to a

constant applied strain and as a function of the parameter Z.
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We now consider a case with cyclic loading. The applied load history, ISV evolution, and
macroscopic stress versus macroscopic strain results for this case are shown in Figs. 9±11. It should be
noted that the strain history depicted in Fig. 9 regards only the E11 component of the strain tensor since
the other two components are null throughout the loading sequence. Careful examination of Fig. 11
reveals slight nonlinearity at the end of the ®rst load increment due to the small growth of the ®ber±
matrix disbond (cf Fig. 10). The return path (during the ®rst unloading) is linear since there is no
further damage growth during unloading, but di�ers slightly from the initial load path due to the
reduced e�ective sti�ness. The disbond reaches its full extent near the end of the third time step (as E11

approaches 0.008). Finally note the unload±reload sti�ness, as E11 goes from 0.008, back to 0 and up
again to 0.010, is very di�erent from its initial value.

4.2. A case with a two-dimensional damage space: monotonic, cyclic and general loadings

In this section we present results regarding the evolution of a linear elastic material with two damage
internal state variables. Despite the fact that the number of ISVs is limited to two, these examples
illustrate features typical of constitutive equations with several ISVs. In fact, they show that

Fig. 8. E�ective elastic moduli for the two-dimensional RVE in Fig. 2, as a function of the damage variable l3 (while l1=l2=0).

Fig. 9. Cyclic loading case: applied macroscopic strain as a function of time.
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microstructural evolution in an RVE with multiple possible damage paths depends on many factors such
as the applied strain history, the initial damage state, and the value of the critical energy release rates
Gcr

i for each damage path.
Results, both in terms of the ISV evolution and stress±strain response, for a monotonic uniaxial

tension strain in the `11' direction and a monotonic shear strain in the `12' direction are shown in Figs.
12 and 13, respectively. The ISVs l1 and l3 are those de®ned in Fig. 2. In both Fig. 12 and Fig. 13 the
stress±strain behavior is characterized by a pronounced drop coinciding with the beginning of damage
growth. In particular, Fig. 12 shows a rather sharp drop in the stress due to the fact that both l1 and l3
start growing almost simultaneously, whereas the gradual softening or rounding of the shear stress±
strain curve in Fig. 13 is a direct result of the fact that there is a noticeable delay in the l1 growth with
respect to that of l3. Also, although it is di�cult to detect it from the ®gures, the branches of the stress±
strain curves corresponding to a growth of the ISVs are non-linear. Linearity in the stress±strain
behavior is recovered only when the ISVs reach their maximum value. In both cases, the fact that said
nonlinear behavior is barely noticeable is caused by the dominating behavior of l3 which (in both cases)
reaches its maximum value rather quickly after it starts growing.

Fig. 14 shows the ISVs propagation trajectories in the two-dimensional damage space unit cube (cf
Fig. 3). The applied strain history used to obtain the various curves appearing in Fig. 14 consists of a

Fig. 10. Cyclic loading case: response of the e�ective medium in terms of the internal state variable l3.

Fig. 11. Cyclic loading case: e�ective medium response in terms of the S11±E11 stress±strain curve.
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linear function of time:8<:E11�t�
E22�t�
E12�t�

9=; �
8<: 0:005
0:000
0:005

9=;t: �39�

Said curves di�er from one another by the value given to initial conditions, i.e., the initial value of the
damage state. That the initial conditions a�ect the damage evolution paths is a result to be expected
since the ISV trajectories are governed by the gradient of the Helmholtz free energy with respect to the
damage state vector. In this case, such a gradient is directly associated to the slope of the surfaces of the
elastic moduli (cf Fig. 4). Another factor that strongly in¯uences the trajectory followed by the system
in damage space is the relative value of the critical energy release rates for a given ISV with respect to
that of all other ISVs. This e�ect is illustrated in Fig. 15 depicting various trajectories obtained using
the strain history in Eq. (39), with a ®xed initial condition, a ®xed value of Gcr

1 and various values of
Gcr

3 . For Gcr
3 =Gcr

1 , l3 grows faster than l1, and, as the value of Gcr
3 is increased relative to Gcr

1 , the
trajectory in damage space will tend to become dominated by the l1 growth, as expected.

Results for a cyclic load history are summarized in Figs. 16±18. Several di�erent instantaneous
sti�nesses are present during the load±reload cycles due to the staggered growth of the ISVs. The
lagging of l1 behind l3, and the ultimate very quick propagation of this crack near the end of the third
time step, produces the interesting ratcheting stress±strain curve shown in Fig. 18. A ®nal lower bound

Fig. 12. Constitutive response with two ISVs: monotonic tensile loading consisting of an applied strain in the `11' direction while

the other components of strain are kept equal to zero.

Fig. 13. Constitutive response with two ISVs: monotonic shear loading consisting of an applied strain in the `12' direction while

the other components of strain are kept equal to zero.
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for the e�ective macroscopic sti�ness is obtained during the ®nal load cycle since both ISVs have
reached their maximum values.

We now investigate the e�ect that the applied strain history sequence can have on damage evolution.
In particular, with reference to the top two graphs in Fig. 19, we subject the homogenized material
point to a load function having both an E12 and an E22 strain history component. The applied strain
history two di�ers from the applied strain history one only in that the application of the E12 history
precedes the E22 history, contrary to what was done in the applied strain history one. However, the ®nal
loading stage for both sequences is the same, and, overall, the maximum strain at any given time is the
same for both applied strain sequences. These loading sequences were chosen so as to address the
following questions:

1. do both load histories eventually produce the same damage state; and
2. are the ®nal apparent e�ective moduli or macroscopic stresses equal?

Fig. 14. Monotonic loading case: evolution of the ISVs as a function of initial conditions.

Fig. 15. Monotonic loading case: evolution of the ISVs as a function of the ratio Gcr
3 /G

cr
1 , that is, the ratio between the critical

values of the energy release rates of the two ISVs characterizing the e�ective constitutive response of the material.
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Fig. 16. Cyclic loading case: applied strain history.

Fig. 17. Cyclic loading case: evolution of the ISVs as a function of time.

Fig. 18. Cyclic loading case: stress±strain curve.
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To address these issues, consider load sequence 2, where a shear E12 strain is applied ®rst. Near the end
of the ®rst step, i.e., for t=1, the disbond crack reaches its full extent (i.e., l3=1). This is re¯ected in a
small but sudden drop in the stresses, as shown in the bottom right graph in Fig. 19. The
microstructural change associated to l3 taking on its maximum value, is also re¯ected in an increase in
the available energy release rate driving the evolution of l1

5. This explains why, despite the unloading
taking place for 1 R t R 2 in the ®rst load sequence, l1 starts growing. This behavior should be
contrasted to that caused by the ®rst load sequence, where l3 reaches its full extent only after t = 2.5
and where l1 never quite reaches its maximum. The latter is achieved during sequence two soon after t
= 2.5. Also, if one compares the behavior in terms of stresses due to the two applied strain histories, it

Fig. 19. E�ects of the applied strain history sequence on the material response.

5 For ®xed values of E22 and l1, G1(l1, l3) is a monotonic increasing function of l3.
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is clear that the maximum stresses reached during the load sequences di�er, except, perhaps, at t = 5.0
when both l1 and l3 have fully extended and a linear stress±strain behavior is recovered. This indicates
that, while the maximum applied strain, whether in the `12' or `22' direction, is the same for the two
load sequences, the overall evolution responses produced are very di�erent in the two cases. The fact
that, once the damage parameters reach their full extent, the subsequent material response is linear
although with reduced macroscopic moduli is consistent with the so-called characteristic damage state
proposed by other authors such as Reifsnider and Masters (1982).

From a practical viewpoint, these analyses reinforce the physically intuitive idea that the overall stress
response depends not only on the damage growth caused by the current load step, but also on the
current value of all of the ISVs caused by the entire preceding load history. In turn, this means that in
an experimental setting one cannot rely on the idea that a given load history for an individual strain
component (while keeping ®xed all other components of strain) induces a characteristic damage
accumulation which is applicable to all load histories.

5. Conclusions

The computational procedure described in this paper, delivers a set of constitutive and evolution
equations for composite materials with growing cracks without knowledge of the load history to be later
imposed on a given (homogenized) material point. The e�ective elastic moduli are determined by solving
a sequence of BVPs for a ®nite set of crack paths and values of the selected ISVs, where the latter are
chosen to represent a direct measure of crack con®guration rather than some average measure.
Microstructural evolution under applied load histories are obtained by numerically integrating the set of
ODEs that result from energy based crack growth laws. The results presented in this paper were all
generated by applying di�erent load strain histories to a single set of constitutive equations. For each
case the behavior resulting from the application of said histories was shown to be physically sound, thus
showing that the proposed approach does yield constitutive equations applicable to the study of a wide
range of diverse loading conditions. Also, because the damage state is known at all points in the time
history, su�cient information is available to calculate and report instantaneous sti�ness and average
RVE stress, as well as to precisely determine the occurrence of local (i.e., pointwise) material instability.
This is precisely the information needed when implementing a so-called user de®ned constitutive relation
in a global structural analysis package (e.g. ABAQUS, HKS, 1998). Finally, given its sensitivity to load
history, this method can be used as a guide in the design of experiments for the characterization of
complex material behavior which is history dependent.

The issues that remain to be addressed to make this approach fully operational, include establishing
reliable criteria for the choice of the damage space, that is, what is the type and number of damage
paths to select for a given RVE in order to predict damage accumulation to a satisfactory
approximation level. A quantitative comparison of the computational e�ciency/accuracy that this
approach o�ers when used in an FEM analysis with respect to a full scale GL approach should also be
made. These issues will be the object of forthcoming publications.

Acknowledgements

Partial support for this research was provided by the National Science Foundation through the NSF
Grant No. CMS-9733653.

A.A. Caiazzo, F. Costanzo / International Journal of Solids and Structures 37 (2000) 3375±33983396



References

Aboudi, J., 1991. Mechanics of Composite Materials, a Uni®ed Micromechanical Approach. Elsevier, Amsterdam.

Andrieux, S., 1981. Un modeÂ le de mateÂ riau micro®ssureÂ avec frottement. Comptes Rendus de l'AcadeÂ mie des Sciences. SeÂ rie II

293, 329±332.

Bakhvalov, N., Panasenko, G., 1989. Asymptotic analysis for periodic structures. In: Mathematical Problems in the Mechanics of

Composite Materials. Kluwer Academic, Dordrecht.

Bensoussan, A., Lions, J-L., Papanicolau, G., 1978. Homogenization: Averaging Processes in Periodic Media. North Holland,

Amsterdam.

Bowen, R.M., 1989. Introduction to continuum mechanics for engineers. In: Mathematics Concepts and Methods in Science and

Engineering, vol. 39. Plenum Press, New York.

Bui, H.D., Ehrlacher, A., 1980. Propagation dynamique d'une zone endommageÂ e dans un solide eÂ lastique±fragile en Mode III et

en reÂ gime permanent. Comptes Rendus de l'AcadeÂ mie des Sciences. SeÂ rie B 280, 273±276.

Bui, H.D., Van, K.D., Stolz, C., 1982. MeÂ canique des solides aneÂ lastiques. Relations entre les grandeurs microscopiques et

macroscopiques pour un solide aneÂ lastique ayant des zones endommageÂ s. Comptes Rendus de l'AcadeÂ mie des Sciences. SeÂ rie B

292, 1155±1158.

Chaboche, J.L., 1981. Continuous damage mechanicsÐa tool to describe phenomena before crack initiation. Nuclear Engineering

Design 64, 233±247.

Chaboche, J.L., 1988a. Continuum damage mechanics: Part IÐGeneral concepts. Journal of Applied Mechanics 55, 59±64.

Chaboche, J.L., 1988b. Continuum damage mechanics: Part IIÐDamage growth, crack initiation and crack growth. Journal of

Applied Mechanics 55, 65±72.

Coleman, B.D., Gurtin, M.E., 1967. Thermodynamics with internal state variables. Journal of Chemical Physics 47, 597±613.

Coleman, B.D., Noll, W., 1963. The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational

Mechanics and Analysis 13, 245±261.

Costanzo, F., Boyd, J.G., Allen, D.H., 1996. Micromechanics and homogenization of inelastic composites materials with growing

cracks. Journal of the Mechanics and Physics of Solids 44, 333±370.

Coussy, O., 1986. Un modeÂ le de viscoeÂ lasticiteÂ con®neÂ e en meÂ canique de la rupture. Comptes Rendus de l'AcadeÂ mie des Sciences.

SeÂ rie II 302, 53±56.

Dvorak, G.J., 1992. Transformation ®eld analysis of inelastic composite materials. Proceedings of the Royal Society of London

A437, 311±327.

Dvorak, G.J., Benveniste, Y., 1992. On transformation strains and uniform ®elds in multiphase elastic media. Proceedings of the

Royal Society of London A437, 291±310.

Eshelby, J.D., 1957. The determination of the elastic ®eld of an ellipsoidal inclusion, and related problems. Proceedings of the

Royal Society of London A241, 376±396.

Germain, P., 1982. Sur certaines deÂ ®nitions lieÂ e aÁ l'eÂ nergie en meÂ chanique des solides. International Journal of Engineering Science

20, 245±259.

Germain, P., Nguyen, Q.S., Suquet, P.M., 1983. Continuum thermodynamics. Journal of Applied Mechanics 50, 1010±1020.

Gri�th, A.A., 1921. The phenomena of rupture and ¯ow in solids. Philosophical Transactions of the Royal Society of London

A221, 163±198.

HKS, 1998. ABAQUSÐA General Purpose Finite Element Program. Hibbitt, Karlsson and Sorrensen, Rhode Island, USA.

Hill, R., 1963. Elastic properties and reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids

11, 357±372.

Hill, R., 1965a. Continuum micro-mechanics of elastoplastic polycrystals. Journal of the Mechanics and Physics of Solids 13, 89±

101.

Hill, R., 1965b. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13, 213±222.

Hughes, T.J.R., 1987. The Finite Element Method. Prentice-Hall, New Jersey.

Kachanov, M.L., 1986. Introduction to continuum damage mechanics. In: Mechanics of Elastic Stability. Martinus Nijho�, The

Netherlands.

Kanninen, M.F., Popelar, C.H., 1985. Advanced Fracture Mechanics. Oxford University Press, New York.

Krajcinovic, D., 1996. Damage mechanics. In: North-Holland Series in Applied Mathematics and Mechanics. Elsevier, Amsterdam.

Leguillon, D., Sanchez-Palencia, E., 1982. On the behavior of a cracked elastic body with (or without) friction. Journal de

MeÂ chanique TheÂ orique et AppliqueÂ e 1, 195±209.

Lemaitre, J., 1996. A Course on Damage Mechanics. Springer-Verlag, Berlin.

Mandel, J., 1964. Contribution theÂ orique aÁ l'eÂ tude de l'eÂ crouissage et des lois de l'eÂ coulement plastique. In: Proceedings of the 11th

International Congress of Applied Mechanics, pp. 502±509.

Mandel, J., 1977. EÂ quations des comportment d'un systeÂ me eÂ lastoviscoplastique dont l'eÂ crouissage est duÃ aÁ des contraintes

reÂ siduelles. Comptes Rendus de l'AcadeÂ mie des Sciences. SeÂ rie A 284, 257±260.

A.A. Caiazzo, F. Costanzo / International Journal of Solids and Structures 37 (2000) 3375±3398 3397



Maugin, G.A., 1992. The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge.

Nguyen, Q.S., 1980. MeÂ thodes eÂ nergeÂ tiques en meÂ canique de la rupture. Journal de MeÂ canique 19, 363±386.

Nguyen, Q.S., 1985. Uniqueness, stability and bifurcation of standard systems. In: Sawczuk, A., Bianchi, G. (Eds.), Plasticity

Today: Modeling, Methods and Applications. Elsevier Applied Science, pp. 399±412 CISM Lecture Notes.

Nguyen, Q.S., Stolz, C., Debruyne, G., 1990. Energy methods in fracture mechanics: stability, bifurcations and second variations.

European Journal of Mechanics, A/Solids 9, 157±173.

Ponte-CastanÄ eda, P., Zaidman, M., 1996a. The ®nite deformations of nonlinear composite materialsÐI. Instantaneous constitutive

relations. International Journal of Solids and Structures 33, 1271±1286.

Ponte-CastanÄ eda, P., Zaidman, M., 1996b. The ®nite deformations of nonlinear composite materialsÐII. Evolution of the

microstructure. International Journal of Solids and Structures 33, 1287±1303.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1986. Numerical Recipes in Fortran. Cambridge University Press,

Cambridge.

Reifsnider, K.L., Masters, J.E., 1982. An investigation of cumulative damage development in quasi-isotropic graphite/epoxy

laminates. In: Reifsnider, K.L. (Ed.), Damage in Composite Materials. American Society for Testing and Materials,

Philadelphia, pp. 40±62 No. 775 in ASTM STP.

Schapery, R.A., 1975a. A theory of crack initiation and growth in viscoelastic media I. Theoretical development. International

Journal of Fracture 11, 141±159.

Schapery, R.A., 1975b. A theory of crack initiation and growth in viscoelastic media II. Approximate methods of analysis.

International Journal of Fracture 11, 369±388.

Schapery, R.A., 1975c. A theory of crack initiation and growth in viscoelastic media III. Analysis of continuous growth.

International Journal of Fracture 11, 549±562.

Stolz, C., 1986. General relationships between micro and macro scales for the non-linear behavior of heterogeneous media. In:

Gittus, J., Zarka, J. (Eds.), Modeling Small Deformations of Polycrystals. Elsevier Applied Science, pp. 89±115.

Suquet, P.M., 1981. Approche par homogeÂ neÂ isation d'une forme d'endommagement. Comptes Rendus de l'AcadeÂ mie des Sciences.

SeÂ rie II 292, 809±812.

Suquet, P.M., 1985. Local and global aspects in the mathematical theory of plasticity. In: Sawczuk, A., Bianchi, G. (Eds.),

Plasticity Today: Modeling, Methods and Applications. Elsevier Applied Science, pp. 279±310.

Suquet, P.M., 1987. Elements of homogenization of inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (Eds.),

Homogenization Techniques for Composite Media. Springer-Verlag, Berlin, pp. 193±278.

Triantafyllidis, N., 1983. On the bifurcation and postbifurcation analysis of elasto-plastic solids under general prebifurcation

conditions. Journal of the Mechanics and Physics of Solids 31, 499±510.

Vakulenko, A.A., Kachanov, M.L., 1971. Continuum theory of cracked media. Mekhanika Tverdogo Liela 4, 159±166.

A.A. Caiazzo, F. Costanzo / International Journal of Solids and Structures 37 (2000) 3375±33983398


